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Abstract

A novel coding technique is presented for signal prediction with applications in-

cluding speech coding, system identification, and estimation of input excitation. The
approach is based on the blind equalization method for speech signal processing in con-

junction with the geometric subspace projection theory to formulate the basic prediction

equation. The speech-coding problem is often divided into two parts, a linear prediction

model and excitation input. The parameter coefficients of the linear predictor and the

input excitation are solved simultaneously and recursively by a conventional recursive

least-squares algorithm. The excitation input is computed by coding all possible out-

comes into a binary codebook. The coefficients of the linear predictor and excitation,

and the index of the codebook can then be used to represent the signal. In addition,

a variable-frame concept is proposed to block the same excitation signal in sequence in

order to reduce the storage size and increase the transmission rate. The results of this

work can be easily extended to the problem of disturbance identification. The basic

principles are outlined in this report and differences from other existing methods are

discussed. Simulations are included to demonstrate the proposed method.

1 INTRODUCTION

In the past decade, a number of advanced technologies have been employed to represent

speech signals digitally for use in communication-related operations such as audio transmis-

sion, storage, manipulation, speech recognition, and even speech synthesis. These operations

can be performed more efficiently by reducing the amount of information needed to repre-

sent a given speech signal. The term "speech coding", or simply "coding" is thus introduced

in speech processing. In speech coding, a major objective is to represent the digital signal
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with as few bits as possible, i.e., to compress the signal. The degree of compression depends

on the cost of transmission or storage, the cost of coding the digital speech signal, and

speech quality requirements. Before 1980, the high cost of coding and low speech quality

made the speech coding impractical. However, with the improved digital signal processing

hardware capability and significant progress in speech coding research, speech coding is now

widely used in a variety of applications. Speech coding techniques proposed and developed

over the past decade can be divided into two general categories; waveform coders and voice

coders (voeoders) [1].

In most of the waveform coding techniques, the samples are processed by the scalar

quantization. A scalar quantizer operates on a single sample at a time and represents each

sample by a sequence of levels through a mapping function. The output of the quantizer,

namely the quantized signal, can hence be coded by binary digits. On the other hand, a

block of samples may be quantized as a single entity through a mapping function, which is

called vector quantization.

In contrast with the waveform coding, voice coding divides the speech problem into two

parts; part one creates an analytical model of the vocal tract, and part two synthesize an

analytical representation of the input excitation. The true input is never measured but

the idea is to reconstruct the recorded signal by eonvolving the analytical model with a

synthesized input. Typically, the analytical model structure is assumed to have all poles

and the synthesized input is assumed to be a periodic impulse train with period equal to the

fundamental frequency. For unvoiced speech, the excitation is a white noise sequence [1, 2].

Linear Predictive Coding (LPC or LP) is a voice coding approach widely used in practice

today. The objectives of LP analysis are to estimate the coefficients of an all-pole model

representing the vocal tract, to determine analytically the type of excitation, and to estimate

the fundamental frequency, and its gain coefficients. Different LPC-type speech analysis and

synthesis schemes differ primarily in the type of input signal which is generated for speech

synthesis. Several schemes have been proposed for generating the input signal; residual

excited linear prediction (RELP) voeoder, multipulse LPC voeoder, code-excited linear

prediction (CELP) [3] and vector sum excited linear prediction (VSELP) [4].

The advanced speech coders since the 1990s are based on the LPC scheme using vector

quantization (VQ). In the LPC-type voeoder, the bulk of the transmission rate is used

to transfer the synthesized excitation sequence. Therefore, how to synthesize excitation



efficientlyandeffectivelybecomesveryimportant. In [5],thevectorquantizationintroduced

includescodebookcoding,treecoding,andtrellis coding. However,asmost of the coders

usecodebookcoding,this methodis of particular interest. In codebookcoding,the set

of possibleoutput sequencesis arrangedin a codebookwhoseelementsarenot restricted

in anyway. Whenthe optimumoutput sequenceis searched,the correspondingindexof

that sequenceis transmitted. In fact, codebookcodingis impracticalwhenthe sizeof the

codebookis large. Someeffort for searchingthe optimumsequencehasbeendone[6], for

examplethe binarytreesearch.Theproperdesignof the codebookis the keyto a success

for LPC-typespeechcoding.

Theconventionalblind equalizationis aimedat recoveringthe input signalappliedto

a linear time-invariantsystemfrom the observedsignaldevelopedat the output of the

system[7]. In otherwords,blindequalizationis a specialkind of adaptiveinversefiltering
that operateswithout accessto the sourceof the input signal. In digital communications,

the input signalis commonlycalledthe transmittedsignal. The time-invariantsystemis

referredto asthe channel. Thereare two generalapproachesdevelopedto achievethis

task; the ConstantModulusAlgorithm (CMA) [7,8] and DecisionDirected(DD) [9,10]

equalizer.Themainideaisto keeptheoutputof theequalizerat constantmodulus(absolute

value)[7,8, 11]. The input signalwill havesomeknownproperty,whichhelpsdetermine

how the observedsignalhasbeencorrupted. In [12, 13],the blind adaptiveprediction

exploitedthe constantmodulusproperty to keepthe predictionerror at eachestimate

within predefinedbounds.Theuseof constantmodulusis to modulatethepredictionerror

to a constantvalue.Oncethepredictionerror ismodulatedto asufficientlysmallvalue,the

predictionderivedfrom blindequalizationbecomesreliable.Applyingthe ideaof constant

modulusto speechcodingenablesthe excitationquantizedat the sametimewhiletheLPC

coefficientsareupdated. Note that the equalizer output is the recovered input signal that

is similar to the LPC-based quantized input. However, this leads an open question of how

small the given modulus needs to be selected [14]. Furthermore, it will be shown in this

paper that the blind adaptive prediction, which only contains a unit modulus, is unable to

obtain the steady LPC solution for speech coding. A natural alternative is to expand then

single modulus to become multiple modulus. As a result, the adaptive multi-modulus blind

predictor is proposed in this paper.

In [15], the multiple modulus concept was proposed to deal with blind equalization of
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signal,suchas Multilevel Quadrature-Amplitude Modulation (M-ary QAM). The major

difference is that, contrary to the approaches presented in [15, 16], our proposed adap-

tive w_lti-wod_l_s blind predictor does not specify a priori the modulus. Moreover, our

approach combines recursive least-squares with DD approaches to determine the modulus

recursively [17]. In contrast, the first proposed MMA (multiple modulus algorithm) [15],

uses a straightforward generalization of the CMA cost function to derive its update and the

second one, DAMA (decision adjusted modulus algorithm), is a hybrid of the CMA and the

DD approaches.

In this paper, we propose a novel coding technique for speech compression. The tech-

nique does not require separate solutions for the equalizer coefficients and input quantiza-

tion. The equalizer coefficients in this paper are nothing but the coefficients of an all-pole

model. The approach is to integrate the input identification into the adaptive estimation of

the equalizer coefficients. The goal is to make the proposed technique feasible for real-time

implementation in practice. The estimation of equalizer coefficients and the input identifi-

cation are obtained recursively by the coefficient smoothing technique [17]. The input signal

is generated without using a separate quantization scheme when the predictor is updated.

The input codebook is derived analytically instead of generating it based on the stochastic

assumptions [18]. After the entire process completed, the parameters to be quantized before

transmission or stored are the coefficients, the gains of the input, and the index of the input

sequence. The geometry space concepts lead to an intensive and complete explanation of

the proposed technique.

Regarding the aim of low bit rate coding, the conventional coders usually deal with the

speech by frames of samples. However, it is likely that this may not be the best way to

describe the non-stationary behavior of the sound sources. On the other hand, the precise

coding based on sample-by-sample can always produce high quality with negligible coding

distortion and negligible coding delay. The blind adaptive prediction is originally proposed

to perform the prediction on the sample-by-sample to overcome the problems that the

conventional LP model suffers from the stationary assumptions involved. As a result, the

approach that proposed in this paper includes a variable frame concept for transmission

and storage. The sample-by-sample scheme is used to do precise coding and obtain the

high quality. The same excitation signal is then blocked into frames to be transmitted or

stored. Hence, the resulting bit rate can be reduced.
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2 ALGORITHM

This section begins with a brief description of conventional linear predictive coding and

blind equalization. The linear predictive techniques were developed mainly for speech cod-

ing, whereas the blind equalization techniques were derived for input identification, i.e.,

transmitted signal recovery for digital communications.

2.1 Linear Prediction (LP)

Linear prediction techniques were first used for speech analysis and synthesis by Itakura and

Saito [19], and Atal and Schroeder [20], which foster further work in coding, recognition,

enhancement and so on [2, 21, 22, 23]. A general flowchart of the LP modeling is shown in

figure 1, and the predicted value is defined by

_,(k)
x(k) Estimated [

Speech Sample A Residual ._ Input lInput Signal_ Linear

f__ Identificati°n I .[ Predictor

Synthesizer

Synthesized

Speech Signal

Figure 1: LPC modeling diagram

+ - i) e(k) (1)
i 1

where Y(k) is the synthesized speech signal and _(k) is its quantized input signal at time

k. Equation (1) shows that the synthesized signal Y(k) is a linear function of the current

input signal _(k) and its past signal Y(k -i) weighted by the tap constant value 0i for

i - 1, 2,..., n where n is an integer greater than zero. In signal processing, Eq. (1) is called

the closed-loop formulation for computing the synthesized signal Y(k). The tap weights

0i are commonly called the LP coefficients that constitutes an all-pole model. The LP

coefficients 0i for i - 1, 2,..., n and the quantized input signal _(k) for k - 1, 2,..., g with

being the length of data length may be obtained by minimizing the squared error between

real and synthesized speech signals, which is defined by

J - E{I x(k) - _(k) 12) (2)
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where E{.} denotes the expectation operator. Accordingly, a number of methods such as

the autoeorrelation method, the eovarianee method, the lattice method, and so forth [24]

were so developed as the formulations for easrehing LP solutions.

2.2 Blind Equalization

Blind Equalization in digital communication is a deeonvolution process to recover the input

signal applied to a time-invariant system. It is a special kind of adaptive inverse filtering

that operate without access the transmitted signal (i.e., input signal). The name "blind

equalization" refers to the ability of an adaptive algorithm to perform deeonvolution in a

blindfolded or self-recovered fashion. Figure 2 shows a general flowchart where the channel

includes the combined effects of a transmit filter, a transmission medium, and a receiver

filter that may be represented by a linear time-invariant system or a linear predictor. The

objective is to estimate the coefficients of the linear predictor and the input signal, given

the observed signal Y(k) for k - 1, 2... ,L The input signal is generally in the form of

binary sequence.

In [12, 13], a procedure was proposed for estimation of the LP coefficients. It was aimed

at overcoming the difficulties inherent in the non-stationarity of the signals to be modeled.

The approach is to keep the prediction error of representation at each estimate to within

a predefined set of bounds rather than minimize the mean squared error in Eq. (2). The

output of the equalizer (i.e., the recovered input signal) can be obtained by

n

Z o (k)x(k - i) (3)
i o

where Oi(k) at each time step k for i - 0,...,n are coefficients to be determined. Note

that Eq. (3) uses the observed quantity x rather than the synthesized signal Y in Eq. (1).

Equation (3) is commonly called the open-loop formulation in signal processing whereas

Eq. (1) is referred to as the closed-loop formulation.
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In 1980,Godardproposeda family of constantmodulusblind equalizationalgorithms

for usein two-dimensionaldigital communicationsystems[7]. Amongthem,the socalled

CMA (constantmodulusalgorithm)is derivedfromthe costfunctionas

JCM_ E{(_(k) 2 - 1)2) (4)

Once the equalization is achieved, the output of the equalizer is modulated to approach to

-4-1. The LP model from Eq. (3) can be modified by normalizing the coefficients Oi(k) at

each time step k for i - 0,..., n such that Oo(k) - 1 to yield

n

_(k) x(k) + Z e_(k)x(k - i) (5)
i 1

The coefficient normalization is equivalent to scaling the observed signal x(k) for k -

1, 2,..., _ such that its absolute maximum value is unity. Equation (5) is identical to the

LP model shown in Eq. (1) except that it is an open-loop formulation which will be explained

later.

Using the blind equalization method, the LP modeling problem is formulated as a con-

strained optimization problem

rain

subject to

IIO(k+ 1) - o(k)l122

Ix(k)+ xr(k - 1)o(k)l

where c is a predefined positive constant value. The coefficient vector O(k) contains the

coefficients of the equalizer,

0(_) [01(_) 02(_)...On(_)] T

and X(k - 1) is an observed sequence,

x(k - 1) [x(k- 1) x(k - 2) .... x(k - _)]r

This constrained optimization problem was reformulated in [12, 13] to a Lagrange equivalent

and the stochastic gradient descent strategy was adopted to solve for the LP coefficient

vector. These algorithms need iterations between each consecutive sample to ensure that

the constraints are satisfied. The prediction implemented to illustrate the performance was

open-loop prediction. Although it is not a closed-loop prediction as required in speech

7



coding,the predictionalgorithmmayprovidea newsolutionfor input identificationand

quantizationbecauseof the predefinedconstantvalueof theequalizeroutput. Indeed,the

definitionof the equalizeroutput in Eq. (5) maybeconsideredasthe binary input of the

LPC-typevocoders.

2.3 Adaptive Multi-Modulus Blind Equalization

To makethe blind equalizationalgorithmapplicablefor speechcoding (i.e., closed-loop

prediction),the conventionalalgorithmmust bemodifiedand advanced.A newapproach

is derivedin this section. The undefinedvalue¢ will bedeterminedautonomouslyand

adaptivelyratherthan randomlypicked.The input signalis not restrictedto a predefined
singleconstantvaluecommonlyusedin the blind adaptiveprediction(seeEq. (3)).

Let the valuesof theoutput of the equalizerfrom Eq. (5) be theseriessumof a binary

streammultipliedbyscalars,
N

_(k) Z ¢_(k)a,(k) (6)
i 1

where 6,i(k) ¢ {-4-1} is a binary stream and qSi(k) is a weighting coefficient. The goal is to

make the weighting coefficient qSi(k) invariant with respect to k. Substituting Eq. (6) into

Eq. (5) yields

N

x(k) + xr(k - 1)o(k) Z a,_(k)¢_(k)
i 1

_r(k)_(k) (7)

where zX(k) _ [61(k) &(k) ... 6N(k)] T and _(k) -- [¢1(k) ¢2(k) ... CN(k)] T. Equation (7)

can be rearranged to become

x(k) - --Xr(k-- 1)O(k)- ar(k)_(k)

[x_(k-_) a_(k)][ o(k)e(k)] (81

Define two new quantities

V(k-1) IX(k-l)]_(k)

9(k) [ O(k)]_(k)
(9)

8



Equation(8) becomes

x(k) - -vr(k - (10)

In practice for speech coding, the coei_icient vector _(k) should be constrained such that

• (k + 1) - _(k) - • (11)

for all k, i.e., independent of k. Imposing the constraint, Eq. (10) becomes

x(k) - -vr(k - (12)

The gain coei_icient vector, O(k), is now integrated into the newly defined coei_icient vector

_I, and can be seen as a deterministic gain vector of the input excitation 5.

Schroeder and Atal [3] used a Gaussian codebook to encode the input. After examining

the first-order cumulative probability distribution function for the prediction residual, they

found it resembled a corresponding Gaussian distribution function with the same mean and

variance. In contrast, our prediction residual from the blind equalization is only a binary

stream, A(k). A binary eodebook may be introduced to determine and encode the input.

Binary coding is less restrictive than the conventional Gaussian eodebook for generating

the input, because it does not impose any assumption on the stochastic process.

It is quite simple to generate the binary eodebook. For example, a 2-bit eodebook

consists of 4 code vectors as follows

(11-1-1)1 -1 1 -1

and a 3-bit eodebook has the form

1 1 1 1 -1 -1 -1 -1 "_)1 1 -1 -1 1 1 -1 -1

1 -1 1 -1 1 -1 1 -1

An N-bit eodebook requires a collection of 2N codes which can be used in Eq. (10) to

estimate _(k). By selecting the minimum error, which results from the difference between

the 2 N estimated values and the original signal, the optimum N-bit input binary sequence

can be determined. Its corresponding index, which is in a binary format using N- bit, can

then be stored or transmitted.

9



TosolveEq. (12)for the constantvector• is quitesimpleassumingthat the optimum

N-bit input binary sequence _(k) for all k is known a priori. Defining the quantities

[ x(n+l) x(n+2) ... x(e) IT (13)X

V [v(_) v(_+l) ... v(e-1)]

[ x(_) x(_+l) ... x(e-1)]a(_+l) a(_+2) ... a(e)

Equation (12) thus produces

(14)

x - -vV,I, (15)

The quantity X is a (g-n) × 1 vector, • is an (n+N) × 1 vector, and V T is a (g-n) × (n+N)

matrix. From Eq. (15), there exits a solution for • if and only if the vector X is in the

column space generated by the columns of V T. For the case where (6- n) > (n + N)

(i.e., more equations than unknowns), it is generally impossible to satisfy such a sufficient

and necessary condition unless the signal to be synthesized is generated from a noise-free

finite-dimensional linear system. The optimum solution is then the least-squares solution,

i.e.,

- -(v_Fx (16)

where _ means the pseudo-inverse and _ implies the estimated quantity of _, that is,

_ [_)(k) 1_(k) (17)

for any k. The least-squares solution minimizes the equation error between the real signal

X and the estimated signal X, i.e.,

- --VT_ (18)

Note that the quantity X is an open-loop estimation and thus not a synthsized speech

signal.

One problem remains to be solved. The optimum N-bit input binary sequence

[ a(n+l) a(n+2) ... a(e) ]A

needs to be determined. Given any sequence, say

Ai

10



let usdenotetheleast-squarespredictionerror to be

Erri X- 7_i X + V_i

where

(19)

£_ -v_r_ (20)

and
_ -(v_rFx

[ x(_) x(_+l) ... x(e_l) I (21)Vi Ai(n+l) Ai(n+2) ... Ai(_)

Among all possible choices of Ai for i 1,..., (2N)/, one should pick the one that minimizes

the norm of Err+ There are several ways of determining the optimum coefficient vector

and the optimum N-bit input binary sequence A from Eq. (16). The key idea is to choose

the N-bit input binary sequence such that the columns of V T generate a column space to

include the vector X as much as possible.

Here we introduces a recursive least-squares technique that minimizes the cost function

defined as
k

rain IIZ _k-_[x(i)+ V_(i- 1)_(k)]2 II (22)
i 1

where • is the smoothing coefficient vector and 0 < ), < 1 is the forgetting factor weighting

the data. The most recent data is given unit weight, but data that is n time steps old is

weighted by )n. The method is commonly called exponential forgetting.

The recursive least-squares algorithm is summarized in the following. At the time index

k, choose the N-bit input A(k) among all possible binary combinations such that the

estimation error is minimum, i.e.,

_(k) --VT(k -- 1)_,(k -- 1)

[_)(k-1)],_(k 1) (23)[ x_(k- 1) _(k) ]

e_in(k) rain II x(k)- _(k)II (24)
A(k)

Both the coefficient vector 6) of the blind predictor and the gain coefficient vector _ of the

input can be updated recursively by

P(k - 1)V(k - 1) (25)
G(k) - %+VT(k_l)P(k_l)V(k_l)

11



P(k) - P(k- 1)I],I--G(k)VT(k), (26)
A

_(k) -- _(k -- 1) + emin(k)G(k) (27)

where G(k) is the update gain determined by the matrix P(k - 1), the vector X(k - 1), and

the scalar A. The initial values of P(0) and _'(0) can be arbitrarily assigned. Conventionally,

P (0) and _)s (0) are assigned as dIn+N and 0(n+N)× 1, respectively, where d is a large positive

number, In+N is an identity matrix of dimension (n + N) x (n + N), and 0(_+N)×I is a

zero matrix of dimension (n + N) x 1. The estimated coefficient vector, _', is the converged

coefficient vector at k - l, that is,

-- _'(0 (28)

It is known from the reeursive least-squares algorithm that the initialization introduces a

bias into the parameter estimate _ produced by the recursive least-squares method. For

large data lengths, the exact value of the initialization constant is not important. It is noted

that some accuracy may be lost when a least-squares problem is solved using the classical

approach as described in this section. The reason is that the input and output data are

squared to compute the data correlation. There is another method based on orthogonal

transformation to avoid the computation of data correlation for the least-squares estimates.

The method is commonly called a square root method [27, 28], because it works with the

square root of the data correlation.

In the conventional linear predictive coding, the coefficients O are computed alone using

the open-loop formulation via the auto-correlation method or covariance method [1, 25] to

minimize the prediction error. Other technology may use the cepstrum analysis to obtain the

prediction coefficients, for example the homomorphic, but the computational complexity is

a considerable problem in practice. After the coefficients O are obtained, the input can then

be modeled either using vector quantization or any other methods to quantize the prediction

error, but most methods involve a priori assumption about the type of the stochastic process.

In contrast, our proposed method updates the equalizer coefficients O together with the gain

coefficients • of the input simultaneously. The application of constant modulus property

to constrain the prediction error can be seen as a novel quantization methodology of the

input. The input codebook can thus be derived directly from the analytical analysis without

involving any assumption about the stochastic properties of the prediction error.

12



2.3.1 Open-loop prediction

Given the estimatedcoefficientvector _' determinedfrom equation(27), the open-loop

predictionequationsimilar to equation(23)is

_(k) V_(k - 1)_,

[ Xr(k - 1)

or equivalently

(29)

N

i 1 i 1

(30)

where 0i and _i are constant quantities. The open-loop prediction uses the observed signal

to compute the signal prediction. The predicted value _(k) is computed using the past

observed signal x(k - 1),..., x(k - n) and the input _(k). The binary sequence A(k) --

[al(k) a2(k) ... (_N(k)] T of dimension N × 1 is chosen from the N-bit codebook of dimension

N × 2 N with a total of 2 N different codevectors in the codebook. At each time k, only an

index from the 2 N possible choices is stored. From hereon, Eq. (30) is used as a predictive

model of the adaptive multi-modulus blind equalization for open-loop prediction.

For the case where N - 1, Eq. (30) becomes

+ a x(k - i)  lal(k) (31)
i 1

The binary signal al(k) is either 1 or -1 that is almost identical to the output of the

equalizer shown in Eq. (3) with its coefficients computed by minimizing the cost function

defined in equation (4). The main difference is that the coefficients 0i,..., 0n together with

¢1 in equation (31) are obtained by minimizing a global cost function rather than a local

cost function at each time step k.

There are a total of N constant gain coefficients _1,..., _N for computing the output of

the blind equalizer in Eq. (30), where I _ I is the i-th modulus. The open-loop prediction,

Eq. (30), may thus be called the adaptive multi-modulus blind predictor or more precisely

the adaptive N-modulus blind predictor. In [15], the multiple modulus concept has been pro-

posed to deal with blind equalization of signal, such as M-ary QAM (quadrature amplitude

modulation). The proposed approach in this paper differs from the approaches in [15, 16]

13



by not presettingthe modulus.Furthermore,our proposedapproachis a combinationof

recursiveleast-squaresand the DecisionDirected(DD) [9, 10]equalizer.In [15]the first

proposedalgorithm,the MMA (multiplemodulusalgorithm),usesa straightforwardgen-

eralizationof thecostfunctionfor the ConstantModulusAlgorithm(CMA) [7,8] to derive

its update. Thesecondone,DAMA (decisionadjustedmodulusalgorithm),is a hybrid of

the CMA andthe DD approaches.

2.3.2 Closed-loop prediction for speechcoding

In speechcoding,theobjectiveis to usetheleastnumberof bits in thedigital representation

of thespeechsignal,that is,to compressthesignalx (1), x (2),..., x (f) where f is the length

of the signal. The open-loop prediction cannot be used for such purpose. It can only be

done by the closed-loop prediction equation, i.e.,

_(k) - 0i_(k - i) - _ ¢iui(k); k 1,... ,_ (32)
i 1 i 1

where the initial signal 2(0), _(-1),..., 2(-n + 1) are set to zero. For a better prediction,

one may shift the starting prediction point from k - 1 to k - n + 1 and set the first n

points to be the actual signal. However, it will increase few bits for the additional n initial

points to be stored and transmitted for speech coding.

From equation (32), it is clear that the speech signal can be represented by the n

equalizer coefficients 01,..., 0_, the N gain coefficients (_1,..., (_N, and the _ N-bit binary

input input sequences. Assuming that each parameter may be accurately quantized by an

M-bit binary number. As a result, a total of M(n + N) + N_ bits plus the codebook will

be able to represent the speech signal of length 6. If the sampling rate is 8 KHz, a resulting

bit rate is [M(n + N) + Nf]/8000 kb/s.

2.4 Variable frame of input signal

To reduce the amount of data that must be transmitted, the conventional coders usually

deal with the speech by frames (blocks) of samples. However, this may not be the best

way to describe the non-stationary behavior of the sound sources. On the other hand,

the coding performed sample-by-sample always results in a larger number of data to be

transmitted. But these precise coding based on sample-by-sample can always produce high

quality with negligible coding distortion and delay. The blind adaptive prediction was

14



0.8

0.6

0.4

.._ 0.2
2

&-0.2
oo

-0.4

-0.6

-0.8
0 1000 2000 3000 4000 5000 6000 7000

Sample number

Figure 3: Original speech signal 'while new'

originally proposed to carry out the prediction on the sample-by-sample basis to overcome

the non-stationary problems.

Here we introduce a variable frame concept for transmission and storage of input signal.

The sample-by-sample scheme is used to do precise coding and obtain the high quality.

Then, the input (eodeveetor) sequence eX(k) for k - 1,... ,_ is blocked into frames to be

transmitted or stored. Each frame contains an identical index from the binary eodebook.

The length of each frame is varying. Only the beginning point and the length of the frame

need to be stored and transmitted. Hence, the resulting number of bits to represent the

speech signal can be reduced. It may greatly reduce the bit rate for transmitting or the

space for storing the input signal.

3 SIMULATION

The simulation is performed using a 10-th order equalizer for a speech signal shown in

figure 3 where the total sample number is 6650. Several binary eodebooks of different bit

numbers are generated for searching the optimum input sequence. We set the forgetting

factor A - 0.999 and the initial value of P(0) - 1000In. First, the distribution of the
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Figure 4: Mean squared error via different bit number codebooks

reconstructed error with various bit codebooks is examined. Figure 4 shows the plot of the

mean squared error between the synthesized signal _(k) and its original signal x(k), i.e.,
6650

_k 1 (x(k) - _(k))2/6650. When the bit number increases, there is a significant decrease

in the mean squared error. However, it also leads to a considerable computational cost

because of the search in an expanded codebook. As a 10-bit Gaussian codebook is adopted

in CELP [3], we also focus on the bit number less than 10. This is due to the fact that

for those codebooks with bit number more than 10 (where a 10-bit codebook consists of

21° - 1024 codevectors), the number of codevectors increases exponentially with the number

of bits resulting in a high computational cost while searching for the optimum eodeveetor.

Let us now examine the results using a 4-bit codebook and a 8-bit codebook. For the 4-bit

codebook, the gain vector for the input, O(k), is plotted in figure 5, and the coei_cients

of the equalizer is shown in figure 6. The synthesized speech generated by the closed-

loop prediction can be found in figure 7. Figure 8 is the error between the original signal

and the synthesized one, simply by subtraction. Since the recursive algorithm involves

the coefficient smoothing, all parameters converge to a constant value. The gain vector

approaches a constant value after about 2000 samples. These well-behavior gains indicate

that the number of bits employed to do coding is sui_cient. The synthesized speech signal
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Figure 5: The gain vector for 4-bit coding

turns out to retain a good quality as expected. While listening to the sound, despite of the

existing error, listeners can still hear it clearly.

The results obtained from the 8-bit eodebook are shown in figures 9, 10, 11, and 12.

The adapted gain vector is shown in figure 9, and the coefficients of the equalizer can

be found in figure 10. The synthesized speech signal is in figure 11. In figure 12, we

show the error between the original speech and synthesized one. The primary means of

measuring performance is through subjective testing by listeners. Consistent with the results

in figures 8 and 12, the quality of 8-bit coding is better than that of 4-bit coding. It is hard

to distinguish audible differences the original and synthesized signal using 8-bit coding. It

means that the quality of synthesized speech is reliable.

Revisiting the result in figure 4 for the bit number less than 10, the mean squared

errors are, in fact, slightly different except those from 1-bit and 2-bit. Let us compare

and discuss these cases in a detail manner. From the geometric theory as discussed in the

previous section, the vector X must be representable in terms of the space generated by

the columns of V T to obtain an optimal solution for _I, that minimizes the error between

the original speech and its synthesized one. The increase of N-bit representation is meant

to expand the dimension of the space generated by X. Theoretically, the larger the N-bit

17



3

2 ............................................................................................................................

<dP 1 ............................................................................................................................

_ 0 ...........................................................................................................................

_-_

-2 ............................................................................................................................

-3 ................ _--

-4o 10;0 2ooo3o;o 4o;o 5o;o 6o;o 7ooo
Sample number

Figure 6: The coefficients of the equalizer for 4-bit coding

0.6

0.4

"_ 0.2
2

.= 0

_ -0.2
m

=_ -0.4
O0

-0.6

-0.8
0 1000 2000 3000 4000 5000 6000

Sample number

Figure 7: The synthesized signal for 4-bit coding

7000

18



0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5
0 1000

Figure 8:

2000 3000 4000 5000 6000 7000

Sample number

The prediction error for 4-bit coding

0.015

< _ 0.005

©

-0.005

/

0.01 ................ _...........................................................................................................

.._................. i ................. _................. :................. _................. ;.................

-0.01

0 ................ J ................. ; .........................................................................................

1000 2000 3000 4000 5000 6000

Sample nmnber

Figure 9: The gain vector for 8-bit coding

7OOO

19



3 ................. :..........................................................................................................

2 ................. !..........................................................................................................

................. i..........................................................................................................

"3 0 ...........................................................................................................................

-1 ........................................................................................

-2 ................. i..........................................................................................................

i . ! ! !

0 1000 2000 3000 4000 5000 6000 7000

Sample mmaber

Figure 10: The coemcients of the equalizer for 8-bit coding

0.8

0.6

.._ 0.4
2

0.2

_-0.2

-0.4

-0.6
0 1000 2000 3000 4000 5000 6000

Sample number

Figure 11: The synthesized signal for 8-bit coding

7000

2O



0.4

0.3

0.2

0.1

0

o=
"5

-0.1

-0.2

-0.3

-0.4

-0.5
0 1000 2000 3000 4000 5000 6000 7000

Sample number

Figure 12: The prediction error for 8-bit coding

representation is the better the optimal solution should be. However, the computational

cost is also increased. An optimal N-bit representation depends on the desired quality of

the synthesized signal, computational cost, and the data transmission rate. Let us compare

and discuss the gain vector for the input signal for several different cases. Recall the gain

vectors • shown in figures 5 and 9, and plot the gain vector results from a l-bit codebook,

a 2-bit codebook, and a 6-bit codebook in figures 13, 14, and 15, respectively. Clearly the

l-bit or 2-bit representation is not sufficient to produce a converged solution for the gain

vector, that is, the space generated by V is not enough and the solution is poor. For a

4-bit representation, the solution improves considerably. Cases with 6-bit, 8-bit, or even

10-bit, show that the results are approximately the same but the extra bits enhance the

quality of synthesis. Beyond 10-bit, the quality enhances slightly, but the computational

cost increases considerably for just a bit added.

In the following, we introduce an improved scheme to advance the limited quality without

significantly increasing the cost of computation. As used in the differential pulse code

modulation (DPCM) [26], speech quality in LPC can be improved at the expense of a higher

bit rate by computing and transmitting a residual error. We employ a low-bit codebook to

encode both the signal and its residual. A 4-bit codebook as discussed earlier is sufficient
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to obtain a good solution for the gain vector of input signal. As shown in figure 8, the

error is encoded again by the same 4-bit binary eodebook. Figure 17 shows that the error

of the synthesis is reduced when compared to that in figure 12. Moreover, when listening

to them, the quality of the improved scheme is better than just encoding the signal by a

8-bit eodebook.

In this improved scheme, we repeat the encoding process of the prediction residual

and thus the computational cost of encoding is doubled. Since the proposed algorithm is

eomputationally efficient, this cost increase is still acceptable. Because we split a 2N-bit

coding to two N-bit coding, the eodebook for optimal search is reduced by 2 N in dimension.

The computational cost for tow N-bit coding is still much cheaper than the 2N-bit coding.

Moreover, it was found that beyond certain number of bits in the eodebook, the quality of

synthesized signal does not improve. As the results shown in figure 5, the gain of the input

is as stable as that in figure 9, implying that the space spanned by X with 4-bit coding

is sufficient enough to produce a good solution of _. By applying the multi-step coding,

the quality by two 4-bit coding is considerably improved than that by one 8-bit coding.

This improved scheme not only enhances the quality of speech as the same 8 bits stored

or transmitted, but also decrease the computational cost during the search for an optimum
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8-bit input sequence. Figure 18 shows the sizes of 4-bit and 8-bit codebooks.

4 CONCLUSIONS

In this report, a new method is developed and implemented for speech coding and synthesis.

The conventional linear predictive coding requires two computational steps, i.e., coefficient

estimation of an all-pole model, and quantization of the prediction residual. The model

coefficients are estimated by minimizing the mean squared error. The prediction residual

is quantized to be used as the input signal during the process of speech coding and signal

synthesis. On the other hand, the blind adaptive predictive coding estimates the coefficients

of the blind equalizer with the assumption that the output of the equalizer (i.e., the input

for speech coding) is a priori fixed at uncertain values. It generally produces a poor estimate

of the coefficients and a poor quality of the signal synthesis.

In contrast, the proposed method uses the deterministic approach to simultaneously

estimate the combined coefficients of the blind equalizer and the binary input excitation.

The linear geometric theory is used to establish the theoretical background of the proposed

method. The combined coefficients are estimated by minimizing the angle between a vec-

tor in the direction of the signal and the space generated by the shifted signal and the

binary input. A recursive algorithm is introduced for computational ease and real-time

implementation. Simulations have shown that the quality of the synthesized signal can be

significantly improved from l-bit coding to 4-bit coding. Beyond 4-bit coding, the qual-

ity enhances slightly but the computational cost increases considerably. To overcome this

problem, the encoding process is repeated on the prediction residual using the same 4-bit
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codebook.With muchlesscomputationalcost,the repetitiveprocessproducesthe quality

of the synthesizedsignalwith the 4-bit codebookbetter than that with the 8-bit coding.

The proposedtechniqueprovidesa totally differentframeworkfor voicecoders.The

conceptbasedon the lineargeometrictheorygivesanewdirectionto exploremorefunda-

mentalworksandapplications.
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